irwan-panarobost Tidak ada harga atas waktu, tapi waktu sangat berharga. Memilik waktu tidak menjadikan kita kaya, tetapi menggunakannya dengan baik adalah sumber dari semua kekayaan(mario teguh)

Kamis, 28 April 2011

Facemoods - Cara Menambah Emoticon di Chat Facebook









1. Login ke Facebook anda.
(o'iya ini hanya khusus bagi pengguna Firefox, so bagi yang belum menggunakan firefox silahkan download dulu di http://www.mozilla.com)












2. Instal Add-ons Facemood di http://facemoods.com/firefox, dengan cara Klik Add to Firefox kemudian pilih Allow.
3. Kemudian klik Install Now.







4. Restart Firefox Anda









Selesai.

Atau anda bisa juga menggunakan cara yang kedua, ini seperti menggunakan add-ons seperti biasa:

1. Klik menu Tools pada Firefox anda, kemudian klik Add-ons.

2. Setelah muncul kotak Add-ons, lakukan pencarian Facemoods di kotak pencari Add-ons.

3. Setelah ketemu, klik Add to firefox.

4. Kemudian lakukan seperti pada no.3 dan 4 pada cara yang pertama di atas.

5. Nah, kalau sudah selesai, berarti anda sekarang sudah bisa menikmati dan menggunakan emoticon baru anda.
cat: Ini hanya akan berfungsi jika teman Anda juga menggunakan Mozilla Firefox dengan Facemood yang terinstal juga pastinya

Senin, 25 April 2011

Sistem Penamaan Domain

NS (Domain Name System, bahasa Indonesia: Sistem Penamaan Domain) adalah sebuah sistem yang menyimpan informasi tentang nama host maupun nama domain dalam bentuk basis data tersebar (distributed database) di dalam jaringan komputer, misalkan: Internet. DNS menyediakan alamat IP untuk setiap nama host dan mendata setiap server transmisi surat (mail exchange server) yang menerima surat elektronik (email) untuk setiap domain.

DNS menyediakan servis yang cukup penting untuk Internet, bilamana perangkat keras komputer dan jaringan bekerja dengan alamat IP untuk mengerjakan tugas seperti pengalamatan dan penjaluran (routing), manusia pada umumnya lebih memilih untuk menggunakan nama host dan nama domain, contohnya adalah penunjukan sumber universal (URL) dan alamat e-mail. DNS menghubungkan kebutuhan ini.

Sejarah singkat DNS

Penggunaan nama sebagai pengabstraksi alamat mesin di sebuah jaringan komputer yang lebih dikenal oleh manusia mengalahkan TCP/IP, dan kembali ke zaman ARPAnet. Dahulu, setiap komputer di jaringan komputer menggunakan file HOSTS.TXT dari SRI (sekarang SIR International), yang memetakan sebuah alamat ke sebuah nama (secara teknis, file ini masih ada - sebagian besar sistem operasi modern menggunakannya baik secara baku maupun melalui konfigurasi, dapat melihat Hosts file untuk menyamakan sebuah nama host menjadi sebuah alamat IP sebelum melakukan pencarian via DNS). Namun, sistem tersebut diatas mewarisi beberapa keterbatasan yang mencolok dari sisi prasyarat, setiap saat sebuah alamat komputer berubah, setiap sistem yang hendak berhubungan dengan komputer tersebut harus melakukan update terhadap file Hosts.

Dengan berkembangnya jaringan komputer, membutuhkan sistem yang bisa dikembangkan: sebuah sistem yang bisa mengganti alamat host hanya di satu tempat, host lain akan mempelajari perubaha tersebut secara dinamis. Inilah DNS.

Paul Mockapetris menemukan DNS di tahun 1983; spesifikasi asli muncul di RFC 882 dan 883. Tahun 1987, penerbitan RFC 1034 dan RFC 1035 membuat update terhadap spesifikasi DNS. Hal ini membuat RFC 882 dan RFC 883 tidak berlaku lagi. Beberapa RFC terkini telah memproposikan beberapa tambahan dari protokol inti DNS.

Teori bekerja DNS

Para Pemain Inti
Para Pemain Inti

Pengelola dari sistem DNS terdiri dari tiga komponen:

* DNS resolver, sebuah program klien yang berjalan di komputer pengguna, yang membuat permintaan DNS dari program aplikasi.
* recursive DNS server, yang melakukan pencarian melalui DNS sebagai tanggapan permintaan dari resolver, dan mengembalikan jawaban kepada para resolver tersebut;

dan ...

* authoritative DNS server yang memberikan jawaban terhadap permintaan dari recursor, baik dalam bentuk sebuah jawaban, maupun dalam bentuk delegasi (misalkan: mereferensikan ke authoritative DNS server lainnya)

Pengertian beberapa bagian dari nama domain

Sebuah nama domain biasanya terdiri dari dua bagian atau lebih (secara teknis disebut label), dipisahkan dengan titik.

* Label paling kanan menyatakan top-level domain - domain tingkat atas/tinggi (misalkan, alamat www.wikipedia.org memiliki top-level domain org).
* Setiap label di sebelah kirinya menyatakan sebuah sub-divisi atau subdomain dari domain yang lebih tinggi. Catatan: "subdomain" menyatakan ketergantungan relatif, bukan absolut. Contoh: wikipedia.org merupakan subdomain dari domain org, dan id.wikipedia.org dapat membentuk subdomain dari domain wikipedia.org (pada praktiknya, id.wikipedia.org sesungguhnya mewakili sebuah nama host - lihat dibawah). Secara teori, pembagian seperti ini dapat mencapai kedalaman 127 level, dan setiap label dapat terbentuk sampai dengan 63 karakter, selama total nama domain tidak melebihi panjang 255 karakter. Tetapi secara praktik, beberapa pendaftar nama domain (domain name registry) memiliki batas yang lebih sedikit.
* Terakhir, bagian paling kiri dari bagian nama domain (biasanya) menyatakan nama host. Sisa dari nama domain menyatakan cara untuk membangun jalur logis untuk informasi yang dibutuhkan; nama host adalah tujuan sebenarnya dari nama sistem yang dicari alamat IP-nya. Contoh: nama domain www.wikipedia.org memiliki nama host "www".

DNS memiliki kumpulan hirarki dari DNS servers. Setiap domain atau subdomain memiliki satu atau lebih authoritative DNS Servers (server DNS otorisatif) yang mempublikasikan informas tentang domain tersebut dan nama-nama server dari setiap domain di-"bawah"-nya. Pada puncak hirarki, terdapat root servers- induk server nama: server yang ditanyakan ketika mencari (menyelesaikan/resolving) dari sebuah nama domain tertinggi (top-level domain).

Sebuah contoh dari teori rekursif DNS
Sebuah contoh mungkin dapat memperjelas proses ini. Andaikan ada aplikasi yang memerlukan pencarian alamat IP dari www.wikipedia.org. Aplikasi tersebut bertanya ke DNS recursor lokal.

* Sebelum dimulai, recursor harus mengetahui dimana dapat menemukan root nameserver; administrator dari recursive DNS server secara manual mengatur (dan melakukan update secara berkala) sebuah file dengan nama root hints zone (panduan akar DNS) yang menyatakan alamat-alamt IP dari para server tersebut.
* Proses dimulai oleh recursor yang bertanya kepada para root server tersebut - misalkan: server dengan alamat IP "198.41.0.4" - pertanyaan "apakah alamat IP dari www.wikipedia.org?"
* Root server menjawab dengan sebuah delegasi, arti kasarnya: "Saya tidak tahu alamat IP dari www.wikipedia.org, tapi saya "tahu" bahwa server DNS di 204.74.112.1 memiliki informasi tentang domain org."
* Recursor DNS lokal kemudian bertanya kepada server DNS (yaitu: 204.74.112.1) pertanyaan yang sama seperti yang diberikan kepada root server. "apa alamat IP dari www.wikipedia.org?". (umumnya) akan didapatkan jawaban yang sejenis, "saya tidak tahu alamat dari www.wikipedia.org, tapi saya "tahu" bahwa server 207.142.131.234 memiliki informasi dari domain wikipedia.org."
* Akhirnya, pertanyaan beralih kepada server DNS ketiga (207.142.131.234), yang menjawab dengan alamat IP yang dibutuhkan.

Proses ini menggunakan pencarian rekursif (recursion / recursive searching).
[sunting] Pengertian pendaftaran domain dan glue records

Membaca contoh diatas, Anda mungkin bertanya: "bagaimana caranya DNS server 204.74.112.1 tahu alamat IP mana yang diberikan untuk domain wikipedia.org?" Pada awal proses, kita mencatat bahwa sebuah DNS recursor memiliki alamat IP dari para root server yang (kurang-lebih) didata secara explisit (hard coded). Mirip dengan hal tersebut, server nama (name server) yang otoritatif untuk top-level domain mengalami perubahan yang jarang.

Namun, server nama yang memberikan jawaban otorisatif bagi nama domain yang umum mengalami perubahan yang cukup sering. Sebagai bagian dari proses pendaftaran sebuah nama domain (dan beberapa waktu sesudahnya), pendaftar memberikan pendaftaran dengan server nama yang akan mengotorisasikan nama domain tersebut; maka ketika mendaftar wikipedia.org, domain tersebut terhubung dengan server nama gunther.bomis.com dan zwinger.wikipedia.org di pendaftar .org. Kemudian, dari contoh di atas, ketika server dikenali sebagai 204.74.112.1 menerima sebuah permintaan, DNS server memindai daftar domain yang ada, mencari wikipedia.org, dan mengembalikan server nama yang terhubung dengan domain tersebut.

Biasanya, server nama muncul berdasarkan urutan nama, selain berdasarkan alamat IP. Hal ini menimbulkan string lain dari permintaan DNS untuk menyelesaikan nama dari server nama; ketika sebuah alamat IP dari server nama mendapatkan sebuah pendaftaran di zona induk, para programmer jaringan komputer menamakannya sebuah glue record (daftar lekat???)

DNS dalam praktik
Ketika sebuah aplikasi (misalkan web broswer), hendak mencari alamat IP dari sebuah nama domain, aplikasi tersebut tidak harus mengikuti seluruh langkah yang disebutkan dalam teori diatas. Kita akan melihat dulu konsep caching, lalu mengertikan operasi DNS di "dunia nyata"

Caching dan masa hidup (caching and time to live)
Karena jumlah permintaan yang besar dari sistem seperti DNS, perancang DNS menginginkan penyediaan mekanisme yang bisa mengurangi beban dari masing-masing server DNS. Rencana mekanisnya menyarankan bahwa ketika sebuah DNS resolver (klien) menerima sebuah jawaban DNS, informasi tersebut akan di cache untuk jangka waktu tertentu. Sebuah nilai (yang di-set oleh administrator dari server DNS yang memberikan jawaban) menyebutnya sebagai time to live (masa hidup), atau TTL yang mendefinisikan periode tersebut. Saat jawaban masuk ke dalam cache, resolver akan mengacu kepada jawaban yang disimpan di cache tersebut; hanya ketika TTL usai (atau saat administrator mengosongkan jawaban dari memori resolver secara manual) maka resolver menghubungi server DNS untuk informasi yang sama.

Waktu propagasi (propagation time)
Satu akibat penting dari arsitektur tersebar dan cache adalah perubahan kepada suatu DNS tidak selalu efektif secara langsung dalam skala besar/global. Contoh berikut mungkin akan menjelaskannya: Jika seorang administrator telah mengatur TTL selama 6 jam untuk host www.wikipedia.org, kemudian mengganti alamat IP dari www.wikipedia.org pada pk 12:01, administrator harus mempertimbangkan bahwa ada (paling tidak) satu individu yang menyimpan cache jawaban dengan nilai lama pada pk 12:00 yang tidak akan menghubungi server DNS sampai dengan pk 18:00. Periode antara pk 12:00 dan pk 18:00 dalam contoh ini disebut sebagai waktu propagasi (propagation time), yang bisa didefiniskan sebagai periode waktu yang berawal antara saat terjadi perubahan dari data DNS, dan berakhir sesudah waktu maksimum yang telah ditentukan oleh TTL berlalu. Ini akan mengarahkan kepada pertimbangan logis yang penting ketika membuat perubahan kepada DNS: tidak semua akan melihat hal yang sama seperti yang Anda lihat. RFC1537 dapat membantu penjelasan ini.

DNS di dunia nyata
Di dunia nyata, user tidak berhadapan langsung dengan DNS resolver - mereka berhadapan dengan program seperti web brower (Mozilla Firefox, Safari, Opera, Internet Explorer, Netscape, Konqueror dan lain-lain dan klien mail (Outlook Express, Mozilla Thunderbird dan lain-lain). Ketika user melakukan aktivitas yang meminta pencarian DNS (umumnya, nyaris semua aktivitas yang menggunakan Internet), program tersebut mengirimkan permintaan ke DNS Resolver yang ada di dalam sistem operasi.

DNS resolver akan selalu memiliki cache (lihat diatas) yang memiliki isi pencarian terakhir. Jika cache dapat memberikan jawaban kepada permintaan DNS, resolver akan menggunakan nilai yang ada di dalam cache kepada program yang memerlukan. Kalau cache tidak memiliki jawabannya, resolver akan mengirimkan permintaan ke server DNS tertentu. Untuk kebanyakan pengguna di rumah, Internet Service Provider(ISP) yang menghubungkan komputer tersebut biasanya akan menyediakan server DNS: pengguna tersebut akan mendata alamat server secara manual atau menggunakan DHCP untuk melakukan pendataan tersebut. Jika administrator sistem telah mengkonfigurasi sistem untuk menggunakan server DNS mereka sendiri, DNS resolver umumnya akan mengacu ke server nama mereka. Server nama ini akan mengikuti proses yang disebutkan di Teori DNS, baik mereka menemukan jawabannya maupun tidak. Hasil pencarian akan diberikan kepada DNS resolver; diasumsikan telah ditemukan jawaban, resolver akan menyimpan hasilnya di cache untuk penggunaan berikutnya, dan memberikan hasilnya kepada software yang meminta pencarian DNS tersebut.

Sebagai bagian akhir dari kerumitan ini, beberapa aplikasi seperti web browser juga memiliki DNS cache mereka sendiri, tujuannya adalah untuk mengurangi penggunaan referensi DNS resolver, yang akan meningkatkan kesulitan untuk melakukan debug DNS, yang menimbulkan kerancuan data yang lebih akurat. Cache seperti ini umumnya memiliki masa yang singkat dalam hitungan 1 menit.

Penerapan DNS lainnya
Sistem yang dijabarkan diatas memberikan skenario yang disederhanakan. DNS meliputi beberapa fungsi lainnya:

* Nama host dan alamat IP tidak berarti terhubung secara satu-banding-satu. Banyak nama host yang diwakili melalui alamat IP tunggal: gabungan dengan pengasuhan maya (virtual hosting), hal ini memungkinkan satu komputer untuk malayani beberapa situs web. Selain itu, sebuah nama host dapat mewakili beberapa alamat IP: ini akan membantu toleransi kesalahan (fault tolerance dan penyebaran beban (load distribution), juga membantu suatu situs berpindah dari satu lokasi fisik ke lokasi fisik lainnya secara mudah.
* Ada cukup banyak kegunaan DNS selain menerjemahkan nama ke alamat IP. Contoh:, agen pemindahan surat Mail transfer agents(MTA) menggunakan DNS untuk mencari tujuan pengiriman E-mail untuk alamat tertentu. Domain yang menginformasikan pemetaan exchange disediakan melalui rekod MX (MX record) yang meningkatkan lapisan tambahan untuk toleransi kesalahan dan penyebaran beban selain dari fungsi pemetaan nama ke alamat IP.
* Kerangka Peraturan Pengiriman (Sender Policy Framework) secara kontroversi menggunakan keuntungan jenis rekod DNS, dikenal sebagai rekod TXT.
* Menyediakan keluwesan untuk kegagalan komputer, beberapa server DNS memberikan perlindungan untuk setiap domain. Tepatnya, tigabelas server akar (root servers) digunakan oleh seluruh dunia. Program DNS maupun sistem operasi memiliki alamat IP dari seluruh server ini. Amerika Serikat memiliki, secara angka, semua kecuali tiga dari server akar tersebut. Namun, dikarenakan banyak server akar menerapkan anycast, yang memungkinkan beberapa komputer yang berbeda dapat berbagi alamat IP yang sama untuk mengirimkan satu jenis services melalui area geografis yang luas, banyak server yang secara fisik (bukan sekedar angka) terletak di luar Amerika Serikat.

DNS menggunanakn TCP dan UDP di port komputer 53 untuk melayani permintaan DNS. Nyaris semua permintaan DNS berisi permintaan UDP tunggal dari klien yang dikuti oleh jawaban UDP tunggal dari server. Umumnya TCP ikut terlibat hanya ketika ukuran data jawaban melebihi 512 byte, atau untuk pertukaaran zona DNS zone transfer
[sunting] Jenis-jenis catatan DNS

Beberapa kelompok penting dari data yang disimpan di dalam DNS adalah sebagai berikut:

* A record atau catatan alamat memetakan sebuah nama host ke alamat IP 32-bit (untuk IPv4).
* AAAA record atau catatan alamat IPv6 memetakan sebuah nama host ke alamat IP 128-bit (untuk IPv6).
* CNAME record atau catatan nama kanonik membuat alias untuk nama domain. Domain yang di-alias-kan memiliki seluruh subdomain dan rekod DNS seperti aslinya.
* [MX record]]' atau catatan pertukaran surat memetakan sebuah nama domain ke dalam daftar mail exchange server untuk domain tersebut.
* PTR record atau catatan penunjuk memetakan sebuah nama host ke nama kanonik untuk host tersebut. Pembuatan rekod PTR untuk sebuah nama host di dalam domain in-addr.arpa yang mewakili sebuah alamat IP menerapkan pencarian balik DNS (reverse DNS lookup) untuk alamat tersebut. Contohnya (saat penulisan / penerjemahan artikel ini), www.icann.net memiliki alamat IP 192.0.34.164, tetapi sebuah rekod PTR memetakan ,,164.34.0.192.in-addr.arpa ke nama kanoniknya: referrals.icann.org.
* NS record atau catatan server nama memetakan sebuah nama domain ke dalam satu daftar dari server DNS untuk domain tersebut. Pewakilan bergantung kepada rekod NS.
* SOA record atau catatan otoritas awal (Start of Authority) mengacu server DNS yang mengediakan otorisasi informasi tentang sebuah domain Internet.
* SRV record adalah catatan lokasi secara umum.
* Catatan TXT mengijinkan administrator untuk memasukan data acak ke dalam catatan DNS; catatan ini juga digunakan di spesifikasi Sender Policy Framework.

Jenis catatan lainnya semata-mata untuk penyediaan informasi (contohnya, catatan LOC memberikan letak lokasi fisik dari sebuah host, atau data ujicoba (misalkan, catatan WKS memberikan sebuah daftar dari server yang memberikan servis yang dikenal (well-known service) seperti HTTP atau POP3 untuk sebuah domain.

Nama domain yang diinternasionalkan
Nama domain harus menggunakan satu sub-kumpulan dari karakter ASCII, hal ini mencegah beberapa bahasa untuk menggunakan nama maupun kata lokal mereka. ICANN telah menyetujui Punycode yang berbasiskan sistem IDNA, yang memetakan string Unicode ke karakter set yang valid untuk DNS, sebagai bentuk penyelesaian untuk masalah ini, dan beberapa registries sudah mengadopsi metode IDNS ini.

Perangkat lunak DNS
Beberapa jenis perangakat lunak DNS menerapkan metode DNS, beberapa diantaranya:

* BIND (Berkeley Internet Name Domain)
* djbdns (Daniel J. Bernstein's DNS)
* MaraDNS
* QIP (Lucent Technologies)
* NSD (Name Server Daemon)
* PowerDNS
* Microsoft DNS (untuk edisi server dari Windows 2000 dan Windows 2003)

Utiliti berorientasi DNS termasuk:

* dig (the domain information groper)


Pengguna legal dari domain
Pendaftar (registrant)
Tidak satupun individu di dunia yang "memiliki" nama domain kecuali Network Information Centre (NIC), atau pendaftar nama domain (domain name registry). Sebagian besar dari NIC di dunia menerima biaya tahunan dari para pengguna legal dengan tujuan bagi si pengguna legal menggunakan nama domain tersebut. Jadi sejenis perjanjian sewa-menyewa terjadi, bergantung kepada syarat dan ketentuan pendaftar. Bergantung kepada beberpa peraturan penamaan dari para pendaftar, pengguna legal dikenal sebagai "pendaftar" (registrants) atau sebagai "pemegang domain" (domain holders)

ICANN memegang daftar lengkap untuk pendaftar domain di seluruh dunia. Siapapun dapat menemukan pengguna legal dari sebuah domain dengan mencari melalui basis data WHOIS yang disimpan oleh beberpa pendaftar domain.

Di (lebih kurang) 240 country code top-level domains (ccTLDs), pendaftar domain memegang sebuah acuan WHOIS (pendaftar dan nama server). Contohnya, IDNIC, NIC Indonesia, memegang informasi otorisatif WHOIS untuk nama domain .ID.

Namun, beberapa pendaftar domain, seperti VeriSign, menggunakan model pendaftar-pengguna. Untuk nama domain .COM dan .NET, pendaftar domain, VeriSign memegang informasi dasar WHOIS )pemegang domain dan server nama). Siapapun dapat mencari detil WHOIS (Pemegang domain, server nama, tanggal berlaku, dan lain sebagainya) melalui pendaftar.

Sejak sekitar 2001, kebanyakan pendaftar gTLD (.ORG, .BIZ, .INFO) telah mengadopsi metode penfatar "tebal", menyimpan otoritatif WHOIS di beberapa pendaftar dan bukan pendaftar itu saja.

Kontak Administratif (Administrative Contact)
Satu pemegang domain biasanya menunjuk kontak administratif untuk menangani nama domain. Fungsi manajemen didelegasikan ke kontak administratif yang mencakup (diantaranya):

* keharusan untuk mengikuti syarat dari pendaftar domain dengan tujuan memiliki hak untuk menggunakan nama domain
* otorisasi untuk melakukan update ke alamat fisik, alamat email dan nomor telepon dan lain sebagainya via WHOIS

Kontak Teknis (Technical Contact)
Satu kontak teknis menangani server nama dari sebuah nama domain. Beberapa dari banyak fungsi kontak teknis termasuk:

* memastikan bahwa konfigurasi dari nama domain mengikuti syarat dari pendaftar domain
* update zona domain
* menyediakan fungsi 24x7 untuk ke server nama (yang membuat nama domain bisa diakses)


Kontak Pembayaran (Billing Contact)
Tidak perlu dijelaskan, pihak ini adalah yang menerima tagihan dari NIC.

Server Nama (Name Servers)
Disebut sebagai server nama otoritatif yang mengasuh zona nama domain dari sebuah nama domain.

URL

RL singkatan dari Uniform Resource Locator (diterjemahkan: Pelokasi Sumber Daya Seragam), adalah rangkaian karakter menurut suatu format standar tertentu, yang digunakan untuk menunjukkan alamat suatu sumber seperti dokumen dan gambar di Internet.[1]

URL merupakan suatu inovasi dasar bagi perkembangan sejarah Internet.[1] URL pertama kali diciptakan oleh Tim Berners-Lee pada tahun 1991 agar penulis-penulis dokumen-dokumen dapat merujuk pranala ke Jejaring Jagat Jembar atau World Wide Web.[1] Sejak 1994, konsep URL telah dikembangkan menjadi istilah Uniform Resource Identifier (URI) yang lebih umum sifatnya. Walaupun demikian, istilah URL masih tetap digunakan secara luas.[1]

Uniform Resource Locator

URL menunjukkan sumber daya Internet atau alamat sebuah halaman web (homepage) yaitu halaman suatu dokumen atau program yang ingin ditampilkan atau digunakan.[2] Secara umum perlu memasukkan tiga informasi untuk menuju ke alamat tertentu[2], yaitu :

* Protokol,
* Alamat Server,
* Path File.

Bagian pertaman URL menunjukkan protokol misalnya http:// atau https://.[2] Protokol adalah persetujuan bersama yang digunakan untuk berkomunikasi dengan Hypertext Transfer Protocol.[2] Bagian kedua URL menunjukkan alamat server dimana sumber daya tersebut terletak, misalnya www.microsoft.com untuk website Microsoft Corporation.[2] Bagian ketiga URL adalah path file yaitu menunjukkan lokasi dan nama dokument atau program dalam server tersebut, misalnya: kb/deskapp/word/q1974.html.[2] di mana kb/deskapp/word/ adalah lokasi file dan q1974.html adalah nama berkas.[2]

Tipe URL
Ada dua tipe URL yang dapat digunakan,[3] yaitu:

* URL Absolute (URL Absolut), merupakan alat lengkap yang menyertakan domain pada jaringan yang tepat, direktori di dalam domain, dan file di dalam direktori.[3]
* URL Relative (URL Relatif), menentukan suatu alamat berdasarkan URL yang aktif pada saat itu.[3]

Berikut ini adalah sintaks dan tipe URL: Service://host:port/path/filename.extension (Absolut)

Sedangkan dalam penggunaan URL tersebut dengan tag adalah sebagai berikut:[3]

* Absolute :
* Relative :

Serangan Lewat URL

URL merupakan sebuah mekanisme untuk mengenali sumber-sumber pada web, SSL, atau server FTP, termasuk protokol layer aplikasi yang membuat permintaan (request) ke server web seperti contoh URL http://www.coba.com/images/hardware/pda.html.[4] URL tersebut dapat dijelaskan per bagian. Berkas pda.html sedang di-request oleh protokol HTTP dari sebuah server bernama www.coba.com. Lokasi pda.html dalam ruang situs tersebut adalah pada direktori /images/hardware.[4] Contoh lain seperti,

https://www.coba.com/order/buy.asp?itemA003&pmt=visa

Kemungkinan besar URL di atas dapat dimanfaatkan peretas (hacker). Dugaan pertama bisa ditarik dari nama sumbernya, buy.asp. Ekstensi .asp menandakan bahwa berkas ini adalah ASP. Berkas-berkas ASP berjalan secara khusus pada web server Microsoft, yaitu IIS. Dengan demikian kemungkinan besar www.coba.com berjalan pada Windows NT/2000/XP.[4]

Dari parameter-parameternya, dapat ditemukan lagi beberapa petunjuk. Parameter pertama, item=A003, menandakan bahwa item yang sedang dibeli itu mendapatkan kode item dan rincian item pasti disimpan pada basis data / database.[4]

Action Get URL

Action Get URL digunakan untuk memanggil dokumen lain (HTML, ASP, CGI, dan sebagainya) dari lokasi URL tertentu ke dalam jendela (window) yang ditentukan oleh action get URL tersebut.[5]

Action Get URL memiliki 3 parameter, yakni:[5]

* URL, menyatakan alamat URl di mana dokumen yang hendak dipanggil berada.
* Window, menyatakan nama window atau frame di mana dokumen yang dipanggil hendak diletakkan.
o _self -> menunjuk frame yang sedang digunakan dalam window yang aktif.
o _blank menunjuk sebuah window baru.
o _parent -> menunjuk parent frame dari frame yang sedang digunakan.
o _top -> menunjuk frame utama dari window yang aktif.
* Variables, apakah secara GET, POST, atau tidak dikirimkan sama sekali.

Uniform Resource Identifier

Uniform Resource Identifier

Dalam komputer, satu Uniform Resource Identifier (URI) adalah sebuah string karakter yang digunakan untuk mengidentifikasi nama atau sumber di Internet. Memungkinkan identifikasi seperti interaksi dengan representasi sumber daya melalui jaringan (biasanya di World Wide Web) dengan menggunakan protokol tertentu. Skema yang menetapkan sintaks beton dan terkait protokol mendefinisikan masing-masing URI. URI biasanya terdiri dari bagian yang disebut skema (scheme) yang diikuti sebuah alamat. URI diakses dengan format skema://alamat.resource atau skema:alamat.resource. Misalnya, URI http://yahoo.com menunjukkan alamat resource yahoo.com yang dipanggil lewat skema HTTP Walaupun HTTP adalah skema yang sering digunakan, namun masih tersedia skema-skema lain, misalnya telnet, FTP, News, dan sebagainya.

Hubungan ke URL dan URN

Ilmuwan komputer dapat mengklasifikasikan sebuah URI sebagai pelacak (URL), atau nama (URN), atau keduanya. A Uniform Resource Name (URN) fungsi seperti nama seseorang, sementara Uniform Resource Locator (URL) menyerupai orang jalan-address. Dengan kata lain: yang URN mendefinisikan item identitas, sementara URL yang menyediakan metode untuk menemukannya.

Sistem ISBN untuk buku-buku identifikasi unik menyediakan contoh penggunaan guci. ISBN 0-486-27557-4 (urn: isbn :0-486-27557-4) mengutip jelas edisi khusus drama Shakespeare Romeo dan Juliet. Dalam rangka untuk mendapatkan akses ke obyek ini dan membaca buku, orang akan memerlukan lokasi: alamat URL. URL tipikal buku ini pada sebuah unix-sistem operasi mirip akan menjadi path file seperti file: / / / home / username / Purwoadi Sulistiono.pdf, mengidentifikasi buku elektronik yang tersimpan dalam sebuah file di harddisk lokal. Jadi guci dan URL memiliki tujuan saling melengkapi.

Sejarah

Penamaan, berbicara, dan mengidentifikasi sumber daya

URI dan URL memiliki sejarah bersama. Pada tahun 1990, Tim Berners-Lee's proposal untuk HyperText [1] secara implisit memperkenalkan ide URL sebagai string pendek mewakili sumber daya yang menjadi target dari hyperlink. Pada waktu orang-orang menyebutnya sebagai sebuah "nama hypertext" [2] atau "nama dokumen".
Selama tiga dan setengah tahun, seperti World Wide Web teknologi inti dari HTML (yang HyperText Markup Language), HTTP, dan web browser dikembangkan, kebutuhan untuk membedakan string yang disediakan alamat untuk sumber daya dari string yang hanya bernama sebuah sumber muncul. Meskipun belum secara resmi ditetapkan, istilah Uniform Resource Locator datang untuk mewakili mantan, dan semakin perdebatan Uniform Resource Name datang untuk mewakili kedua.

Selama perdebatan menentukan URL dan guci-guci itu menjadi jelas bahwa dua konsep yang terkandung oleh ketentuan-ketentuan itu hanya aspek fundamental, menyeluruh pengertian tentang identifikasi sumber daya. Pada bulan Juni 1994, IETF dipublikasikan Berners-Lee's RFC 1630: RFC yang pertama (dalam teks non-normatif) mengakui keberadaan URL dan guci, dan, yang lebih penting, yang didefinisikan sintaks formal untuk Universal Resource Identifier - URL-seperti syntaxes string yang tepat dan semantik tergantung pada skema mereka. Selain itu, RFC ini berusaha untuk merangkum skema syntaxes URL yang digunakan pada saat itu. Hal ini juga diakui, tetapi tidak standardisasi, keberadaan relatif URL dan fragmen pengidentifikasi.

Gateway

Gateway adalah sebuah perangkat yang digunakan untuk menghubungkan satu jaringan komputer dengan satu atau lebih jaringan komputer yang menggunakan protokol komunikasi yang berbeda sehingga informasi dari satu jaringan computer dapat diberikan kepada jaringan komputer lain yang protokolnya berbeda. Definisi tersebut adalah definisi gateway yang utama.

Seiring dengan merebaknya internet, definisi gateway seringkali bergeser. Tidak jarang pula pemula menyamakan "gateway" dengan "router" yang sebetulnya tidak benar.

Kadangkala, kata "gateway" digunakan untuk mendeskripkan perangkat yang menghubungkan jaringan komputer besar dengan jaringan komputer besar lainnya. Hal ini muncul karena seringkali perbedaan protokol komunikasi dalam jaringan komputer hanya terjadi di tingkat jaringan komputer yang besar.

Proxy server

Dalam jaringan komputer, sebuah perantara peladen' adalah sebuah [peladen [(komputasi)peladen]] (sistem komputer atau aplikasi) yang bertindak sebagai perantara permintaan dari klien mencari sumber daya dari server lain. Klien A terhubung ke peladen perantara, meminta beberapa servis, seperti berkas, koneksi, halaman web, atau sumber daya lainnya, yang tersedia dari peladen yang berbeda. Server perantara mengevaluasi permintaan menurut aturan penyaringan. Sebagai contoh, mungkin tapis lalu lintas oleh [alamat [IP]] atau protokol. Jika permintaan divalidasi oleh tapis, perantara menyediakan sumber daya dengan menghubungkan ke peladen yang relevan dan meminta layanan atas nama klien. Sebuah peladen perantara secara opsional dapat mengubah permohonan klien atau menanggapi di server, dan kadang-kadang mungkin melayani permintaan tanpa menghubungi peladen yang ditetapkan. Dalam hal ini, tanggapan yang tembolok dari remote peladen, dan selanjutnya kembali permintaan konten yang sama secara langsung.

Webhosting

Apa yang dimaksud dengan Web Hosting :

Web Hosting adalah salah satu bentuk layanan jasa penyewaan tempat di Internet yang memungkinkan perorangan ataupun organisasi menampilkan layanan jasa atau produknya di web / situs Internet. Tempat dapat juga diartikan sebagai tempat penyimpanan data berupa megabytes (mb) hingga terabytes (tb) yang memiliki koneksi ke internet sehingga data tersebut dapat direquest atau diakses oleh user dari semua tempat secara simultan. Inilah yang menyebabkan sebuah website dapat diakses bersamaan dalam satu waktu oleh multi user.


Siapa saja yang membutuhkan Web Hosting :

Seperti telah dijelaskan diatas, setiap orang ataupun perusahaan dapat menyewa tempat atau memanfaatkan jasa web hosting ini, didukung dengan kemajuan teknologi informasi yang ada saat ini maka pemanfaatan jasa web hosting merupakan sarana alternatif yang handal untuk: Promosi, Menyebarkan Informasi, Berjualan, Layanan Publik sampai dengan sekedar tempat untuk menumpahkan isi hati yang kelabu ke dalam buku harian berbasis web (blog: web log) akibat ditinggal kekasih.

Mengapa Perlu Web Hosting :

Kecepatan menyebarkan informasi tentang Jasa, Produk, Layanan Publik dan lainnya merupakan salah satu tolok ukur keberhasilan bisnis perorangan atau perusahaan,

Contoh Pertama : di Indonesia dengan sekitar 100 juta pengguna telepon genggam yang tentu saja dapat tersambung ke internet melalui gprs, tidak ada alasan lagi untuk tidak tersambung ke dunia maya, bahkan di daerah terpencil sekalipun.

Contoh kedua: Seorang mahasiswa kedokteran, dengan dana yang terbatas, untuk mengantisipasi membeli buku kuliah kedokteran yang harganya bisa mencapai jutaan rupiah, dapat dengan mudah memperoleh informasi ilmu pengetahuan dan teknologi melalui situs web, dan ini menjadi tanggung jawab penyelenggara pendidikan untuk menyediakan layanan web site guna memajukan pendidikan. Bahkan seorang dosen sebaiknya memiliki web site.

Singkatnya, bila anda telah membuat prototip disain yang dapat dibaca oleh internet browser seperti html, maka sudah waktunya anda menaruh disain itu di internet dengan mengupload disain anda ke perusahaan yang melayani penjualan hosting.

Kapan anda membutuhkan Situs Web :

Disaat anda ingin memasarkan produk atau jasa melewati batas kabupaten, propinsi, negara, samudra dan benua, disaat anda ingin orang lain memperoleh informasi yang benar mengenai hal-hal kemanusiaan, disaat anda ingin menyebarluaskan pengetahuan demi kesejahteraan sesama manusia, disaat anda ingin melakukan transaksi bisnis yang memudahkan pelangan anda menjangkaunya dari sebuah vila tempat peristirahatan dengan privasi yang tinggi, disaat itulah anda membutuhkan layanan web hosting.

Situs web adalah sebuah channel above the line yang termurah yang ada di pasar saat ini, kemampuan broadcast 24jam seminggu, tak terbatas pada aspek demografis, geografis, menjadikannya positif dalam rasio cost to benefit. Bila anda ingin ditemukan, dikenal, diapresiasi, mengiklankan diri/produk anda, berarti anda wajib memiliki situs web.

Dimana menyewa Web Hosting :

Ratusan bahkan ribuan penyelenggara jasa web hosting, ada dapat memulainya dengan mencari dari mesin pencari google atau yahoo, beberapa penyedia jasa layanan web hosting di indonesia.

Jangan ragu untuk bertanya, bandingkan fitur kunci seperti kapasitas ruang dan kapasitas bandwidth, jangan tergiur oleh promosi penyelenggara jasa web hosting yang bombastis.

Teknologi apa yang digunakan :

Salah satu teknologi yang digunakan adalah fail over hosting, teknologi ini memungkinkan layanan anda tetap online 24 jam karena dudukung oleh beberapa server komputer yang secara otomatis akan menggantikan tugas server komputer yang mengalami kerusakan

Bagaimana cara Mengelola Web Hosting :


Setelah anda memiliki / menggunakan jasa layanan web hosting, selanjutnya bagaimana mengelolanya, hal ini merupakan tantangan yang tidak murah, sebab informasi yang ada harus selalu ditambah dan diperbaharui. Sebuah Tips sederhana yaitu, lakukan persiapan pada posisi Off Line untuk menghemat. Selamat mencoba.

Penjelajah web

Penjelajah web (Inggris: web browser), disebut juga peramban, adalah perangkat lunak yang berfungsi menampilkan dan melakukan interaksi dengan dokumen-dokumen yang disediakan oleh server web. Penjelajah web yang populer adalah Microsoft Internet Explorer dan Mozilla Firefox. Penjelajah web adalah jenis agen pengguna yang paling sering digunakan. Web sendiri adalah kumpulan jaringan berisi dokumen dan tersambung satu dengan yang lain, yang dikenal sebagai World Wide Web.

Sejarah singkat

Penjelajah web pertama kali berbasis teks, seperti halnya Lynx yang populer hingga sekarang, karena memang sistem dengan antarmuka grafis belum umum digunakan pada saat itu. Baru setelah sistem berbasis grafis mulai banyak digunakan, seorang mahasiswa bernama Marc Andressen di University of Illinois di Urbana-Champaign, Amerika Serikat, membuat sebuah penjelajah web berbasis grafis pertama yang berjalan di atas sistem operasi Windows dan UNIX (berbasis Motif). Penjelajah web tersebut dinamai Mosaic.

Selanjutnya, setelah lulus dari universitas, Marc ditawari oleh Alief Falahuddin, salah seorang petinggi Silicon Graphics Incorporated (SGI), untuk membuat perusahaan dengan nama Mosaic Communication, yang kemudian berubah menjadi Netscape Communication. Marc membuat sebuah penjelajah web populer pertama yang digunakan oleh umum, yang disebut dengan Netscape Navigator. Pada saat pengembangannya, Navigator memiliki nama kode Mozilla. Navigator merupakan penjelajah web komersial, akan tetapi seiring dengan waktu akhirnya Navigator pun menjadi dapat diperoleh secara gratis. Sementara itu, penjelajah web Mosaic yang gratis tidak diteruskan lagi pengembangannya, dan diserahkan kepada NCSA (National Computing for Supercomputer Application). Karena NCSA tidak memiliki izin untuk mengomersialkan produk Mosaic, NCSA akhirnya menjual Mosaic kepada Spyglass, yang akhirnya membuat Mosaic menjadi penjelajah web komersial.

Microsoft, yang terlambat turun di pasar penjelajah web, pun membeli lisensi Mosaic dari Spyglass, sehingga pada akhirnya merilis produk penjelajah web-nya, yang disebut sebagai Internet Explorer. Dengan dirilisnya Internet Explorer, muncullah perang besar antara web browser populer, yakni antara Netscape Navigator, dan Microsoft Internet Explorer.

Fitur web dan penjelajah web

Penjelajah web bisa dibedakan lewat fitur-fitur yang mereka dukung. Browser modern dan halaman web biasanya menggunakan banyak fitur dan teknik yang tidak ada pada masa-masa awal web. Disebabkan adanya perang penjelajah web, fitur-fitur Web dan penjelajah web semakin cepat dikembangkan.

Berikut daftar beberapa elemen dan fitur-fitur tersebut:

* ActiveX
* Autocompletion (Pengisian otomatis) URL dan formulir data
* Bookmark untuk mengikuti lokasi yang sering diakses
* Cascading Style Sheet (CSS)
* Cookie yang membolehkan sebuah website untuk mengetahui seorang pengguna lama
* Web cache - Halaman web "disimpan" dalam memori ketika kita membukanya agar dapat diakses lagi walaupun sedang offline
* Digital certificate (Sertifikat Digital)
* DHTML
* Pemuatan gambar menggunakan format gambar yang sudah terkenal seperti GIF, PNG, JPEG, SVG
* Flash
* Favicon
* Font, ukuran, warna
* Formulir untuk mengirimkan informasi
* Frame dan IFrames
* Gambar
* HTTPS
* Integrasi dengan aplikasi desktop lainnya
* Offline browsing terhadap isi web yang sudah dicache terlebih dahulu
* Java applet
* JavaScript untuk isi yang lebih dinamis
* Pengaturan Download
* Penyaringan iklan (Ad filtering)
* Plug-in
* Sejarah kunjungan ke halaman-halaman web terakhir
* Session management
* Tabbed browsing
* Tabel
* XHTML dan XML

"Small-Screen Rendering" ("penampilan pada Layar-Kecil") dari Opera adalah suatu cara memformat ulang halaman web agar dapat masuk ke dalam layar yang kecil, misalnya dalam sebuah ponsel, sekaligus operasi gulung (scroll) horisontal tidak diperlukan lagi.

Browser web menurut pangsa pasar


Data berikut ini yang diperoleh onestat.com menunjukkan proporsi panguna yang menggunakan satu dari browser-browser utama. Data tersebut - yang dikumpul pada November 2004 - diperoleh dengan melihat string agen pengguna 2.000.000 pengguna yang mengunjungi berbagai situs-situs web yang berbeda di 100 negara. [1]

(Perlu diperhatikan bahwa statistik ini tidak dapat dijadikan pegangan untuk menunjukkan penggunaan sebenarnya karena adanya sesuatu yang dinamakan "pembohongan agen pengguna". Kadang-kadang browser non-IE dikonfigurasikan untuk "berbohong" mengenai identifikasi mereka agar dapat mengakses situs-situs web yang akan memblokir mereka jika hal demikian tidak dilakukan. Oleh karena itu, ada kemungkinan bahwa Internet Explorer milik Microsoft sebenarnya sedikit kurang dominan daripada angka-angka yang ditunjukkan di bawah ini)

Browser-browser berbasis Microsoft Internet Explorer: 88.9% (93.9% pada Mei 2004[2])

Versi 7.0 : 1 % dari keseluruhan

Versi 6.0: 80.95% (69.3%) dari keseluruhan

Versi 5.5: 4.18% (12.9%)
Versi 5.0: 3.66% (10.8%)

Browser-browser berbasis Mozilla (termasuk versi-versi terbaru Netscape): 7.35% (2.1%)

Mozilla Firefox 0.10 (Preview 1.0): 2.79%
Mozilla 1.x: 2.77%
Mozilla Firefox 1.0: 1.79%

Opera: 1.33%

Versi 7.x: 1.29% (1.02%)

Safari: 0.91% (0.71%)

Dominasi Internet Explorer mulai jatuh dengan diperkenalkannya browser Firefox. Sejak statistik di atas dikeluarkan, Mozilla Firefox telah mengambil pangsa pasar dari IE dengan cepat, dengan jumlah penggunanya meningkat hampir dua kali lipat dalam waktu kurang dari 6 bulan. [3]

Statistik penggunaan berbeda banyak dari suatu situs ke lainnya. Contohnya Opera mempunyai bagian hampir 20% pada Wikipedia Rusia dan Norwegia.

WWW (World Wide Web)

Waring Wera Wanua[1] atau World Wide Web (disingkat sebagai WWW atau Web) adalah suatu ruang informasi yang yang dipakai oleh pengenal global yang disebut Uniform Resource Identifier (URI) untuk mengidentifikasi sumber-sumber daya yang berguna. WWW sering dianggap sama dengan Internet secara keseluruhan, walaupun sebenarnya ia hanyalah bagian daripadanya.[2]

Pendahuluan

WWW (World Wide Web), merupakan kumpulan web server dari seluruh dunia yang berfungsi menyediakan data dan informasi untuk dapat digunakan bersama.[3] WWW atau biasa disebut web adalah bagian yang paling menarik dari Internet.[4] Melalui web, dapat mengakses informasi-informasi yang tidak hanya berupa teks tetapi bisa juga berupa gambar, suara, video dan animasi. [4]

Fasilitas ini tergolong masih baru dibandingkan surel (email), sebenarnya WWW merupakan kumpulan dokumen-dokumen yang sangat banyak yang berada pada komputer server (web server), di mana server-server ini tersebar di lima benua termasuk Indonesia, dan terhubung menjadi satu melalui jaringan Internet.[4] Dokumen-dokumen informasi ini disimpan atau dibuat dengan format HTML (Hypertext Markup Language).[4]Suatu halaman dokumen informasi dapat terdiri atas teks yang saling terkait dengan teks lainnya atau bahkan dengan dokumen lain.[4]Keterkaitan halaman lewat teks ini disebut hypertext. Dokumen infomasi ini tidak hanya terdiri dari teks tetapi dapat juga berupa gambar, mengandung suara bahkan klip video.[4] Kaitan antar-dokumen yang seperti itu biasa disebut hypermedia.[4]

Jadi dapat disimpulkan bahwa WWW adalah sekelompok dokumen multimedia yang saling terkoneksi menggunakan hyperteks link. Dengan mengklik hyperlink, maka bisa berpindah dari satu dokumen ke dokumen lainnya.[4]

Sejarah

WWW adalah suatu program yang ditemukan oleh Tim Berners-Lee pada tahun 1991.[5] Awalnya Berners-Lee hanya ingin menemukan cara untuk menyusun arsip-arsip risetnya.[5] Untuk itu, dia mengembangkan suatu sistem untuk keperluan pribadi.[5] Sistem itu adalah program peranti lunak yang diberi nama Equire.[5] Dengan program itu, Berners-Lee berhasil menciptakan jaringan terkait antara berbagai arsip sehingga memudahkan informasi yang dibutuhkan.[5] Inilah yang kemudian menjadi dasar dari sebuah revolusi yang dikenal sebagai web.

WWW dikembangkan pertama kali di Pusat Penelitian Fisika Partikel Eropa (CERN), Jenewa, Swiss.[6] Pada tahun 1989 Berners-lee membuat proposal untuk proyek pembuatan hypertext secara global, kemudian pada bulan Oktober 1990, 'World Wide Web' sudah bisa dijalankan dalam lingkungan CERN.[7] Pada musim panas tahun 1991, WWW resmi digunakan secara luas pada jaringan Internet.[7]

Komputasi terdistribusi

Dalam ilmu komputer, komputasi terdistribusi mempelajari penggunaan terkoordinasi dari komputer yang secara fisik terpisah atau terdistribusi. Sistem terdistribusi membutuhkan perangkat lunak yang berbeda dengan sistem terpusat.

Tujuan

Tujuan dari komputasi terdistribusi adalah menyatukan kemampuan dari sumber daya (sumber komputasi atau sumber informasi) yang terpisah secara fisik, ke dalam suatu sistem gabungan yang terkoordinasi dengan kapasitas yang jauh melebihi dari kapasitas individual komponen-komponennya.

Tujuan lain yang ingin dicapai dalam komputasi terdistribusi adalah transparansi. Kenyataan bahwa sumber daya yang dipakai oleh pengguna sistem terdistribusi berada pada lokasi fisik yang terpisah, tidak perlu diketahui oleh pengguna tersebut. Transparansi ini memungkinkan pengguna sistem terdistribusi untuk melihat sumber daya yang terpisah tersebut seolah-olah sebagai satu sistem komputer tunggal, seperti yang biasa digunakannya.

Salah satu masalah yang dihadapi dalam usaha menyatukan sumber daya yang terpisah ini antara lain adalah skalabilitas, dapat atau tidaknya sistem tersebut dikembangkan lebih jauh untuk mencakup sumber daya komputasi yang lebih banyak

Arsitektur

Banyak arsitektur perangkat lunak dan keras yang bervariasi yang digunakan untuk komputasi terdistribusi. Pada tingkat yang lebih rendah, penghubungan beberapa CPU dengan menggunakan jaringan sangat dibutuhkan. Pada tingkat yang lebih tinggi menghubungkan proses yang berjalan dalam CPU tersebut dengan sistem komunikasi juga dibutuhkan.

Arsitektur umum yang memungkinkan sistem terdistribusi antara lain:

* klien-server: klien menghubungi server untuk pengambilan data, kemudian server memformatnya dan menampilkannya ke pengguna.
* arsitektur 3-tier: Kebanyakan aplikasi web adalah 3-Tier.
* arsitektur N-tier: N-Tier biasanya menunjuk ke aplikasi web yang menyalurkan lagi permintaan kepada pelayanan enterprise. Aplikasi jenis ini paling berjasa bagi kesuksesan server aplikasi.
* Tightly coupled: biasanya menunjuk kepada satu set mesin yang sangat bersatu yang menjalankan proses yang sama secara paralel, membagi tugas dalam bagian-bagian, dan kemudian mengumpulkan kembali dan menyatukannya sebagai hasil akhir.
* Peer-to-peer: sebuah arsitektur di mana tidak terdapat mesin khusus yang melayani suatu pelayanan tertentu atau mengatur sumber daya dalam jaringan. Dan semua kewajiban dibagi rata ke seluruh mesin, yang dikenal sebagai peer.
* Service oriented di mana sistem diatur sebagai satu set pelayanan yang dapat diberikan melalui antar-muka standar.
* Mobile code: berdasarkan prinsip arsitektur mendekatkan pemrosesan ke sumber data
* Replicated repository: Di mana repository dibuat replikanya dan disebarkan ke dalam sistem untuk membantu pemrosesan online/offline dengan syarat keterlambatan pembaharuan data dapat diterima.

Infrastruktur komputasi terdistribusi


Hypertext Transfer Protocol

ypertext Transfer Protocol (HTTP) adalah sebuah protokol jaringan lapisan aplikasi yang digunakan untuk sistem informasi terdistribusi, kolaboratif, dan menggunakan hipermedia. Penggunaannya banyak pada pengambilan sumber daya yang saling terhubung dengan tautan, yang disebut dengan dokumen hiperteks, yang kemudian membentuk World Wide Web pada tahun 1990 oleh fisikawan Inggris, Tim Berners-Lee. Hingga kini, ada dua versi mayor dari protokol HTTP, yakni HTTP/1.0 yang menggunakan koneksi terpisah untuk setiap dokumen, dan HTTP/1.1 yang dapat menggunakan koneksi yang sama untuk melakukan transaksi. Dengan demikian, HTTP/1.1 bisa lebih cepat karena memang tidak usah membuang waktu untuk pembuatan koneksi berulang-ulang.

Pengembangan standar HTTP telah dilaksanakan oleh Konsorsium World Wide Web (World Wide Web Consortium/W3C) dan juga Internet Engineering Task Force (IETF), yang berujung pada publikasi beberapa dokumen Request for Comments (RFC), dan yang paling banyak dirujuk adalah RFC 2616 (yang dipublikasikan pada bulan Juni 1999), yang mendefinisikan HTTP/1.1.

Dukungan untuk HTTP/1.1 yang belum disahkan, yang pada waktu itu RFC 2068, secara cepat diadopsi oleh banyak pengembang penjelajah Web pada tahun 1996 awal. Hingga Maret 1996, HTTP/1.1 yang belum disahkan itu didukung oleh Netscape 2.0, Netscape Navigator Gold 2.01, Mosaic 2.7, Lynx 2.5, dan dalam Microsoft Internet Explorer 3.0. Adopsi yang dilakukan oleh pengguna akhir penjelajah Web pun juga cepat. Pada bulan Maret 2006, salah satu perusahaan Web hosting melaporkan bahwa lebih dari 40% dari penjelajah Web yang digunakan di Internet adalah penjelajah Web yang mendukung HTTP/1.1. [1]Perusahaan yang sama juga melaporkan bahwa hingga Juni 1996, 65% dari semua penjelajah yang mengakses server-server mereka merupakan penjelajah Web yang mendukung HTTP/1.1. Standar HTTP/1.1 yang didefinisikan dalam RFC 2068 secara resmi dirilis pada bulan Januari 1997. Peningkatan dan pembaruan terhadap standar HTTP/1.1 dirilis dengan dokumen RFC 2616 pada bulan Juni 1999.

HTTP adalah sebuah protokol meminta/menjawab antara klien dan server. Sebuah klien HTTP (seperti web browser atau robot dan lain sebagainya), biasanya memulai permintaan dengan membuat hubungan ke port tertentu di sebuah server Webhosting tertentu (biasanya port 80). Klien yang mengirimkan permintaan HTTP juga dikenal dengan user agent. Server yang meresponsnya, yang menyimpan sumber daya seperti berkas HTML dan gambar, dikenal juga sebagai origin server. Di antara user agent dan juga origin server, bisa saja ada penghubung, seperti halnya proxy, gateway, dan juga tunnel.

HTTP tidaklah terbatas untuk penggunaan dengan TCP/IP, meskipun HTTP merupakan salah satu protokol aplikasi TCP/IP paling populer melalui Internet. Memang HTTP dapat diimplementasikan di atas protokol yang lain di atas Internet atau di atas jaringan lainnya. seperti disebutkan dalam "implemented on top of any other protocol on the Internet, or on other networks.", tapi HTTP membutuhkan sebuah protokol lapisan transport yang dapat diandalkan. Protokol lainnya yang menyediakan layanan dan jaminan seperti itu juga dapat digunakan.."[2]

Sumber daya yang hendak diakses dengan menggunakan HTTP diidentifikasi dengan menggunakan Uniform Resource Identifier (URI), atau lebih khusus melalui Uniform Resource Locator (URL), menggunakan skema URI http: atau https:.


Sesuai dengan perkembangan infrastruktur internet maka pada tahun 1999 dikeluarkan HTTP versi 1.1 untuk mengakomodasi proxy, cache dan koneksi yang persisten.
Sesi HTTP

Sebuah sesi HTTP adalah urutan transaksi permintaan dan respons jaringan dengan menggunakan protokol HTTP. Sebuah klien HTTP akan memulai sebuah permintaan. Klien tersebut akan membuka sebuah koneksi Transmission Control Protocol|Transmission Control Protocol (TCP) ke sebuah port tertentu yang terdapat dalam sebuah host (umumnya port 80 atau 8080). Server yang mendengarkan pada port 80 tersebut akan menunggu pesan permintaan klien. Saat menerima permintaan, server akan mengirimkan kembali baris status, seperti "HTTP/1.1 200 OK", dan pesan yang hendak diminta, pesan kesalahan atau informasi lainnya.

Berikut ini adalah contoh transaksi yang dilakukan oleh server dan klien S = Server C = Client

C : (Inisialisasi koneksi)
C : GET /index.htm HTTP/1.1
C : Host: www.wikipedia.org
S : 200 OK
S : Mime-type: text/html
S :
S : -- data dokumen --
S : (close connection)


Simple Mail Transfer Protocol

SMTP (Simple Mail Transfer Protocol) merupakan salah satu protokol yang umum digunakan untuk pengiriman surat elektronik di Internet. Protokol ini dipergunakan untuk mengirimkan data dari komputer pengirim surat elektronik ke server surat elektronik penerima.

Protokol ini timbul karena desain sistem surat elektronik yang mengharuskan adanya server surat elektronik yang menampung sementara sampai surat elektronik diambil oleh penerima yang berhak.

Protokol Terkait


  • POP3 protokol untuk mengambil surat elektronik dari server.
  • IMAP sejenis dengan POP3 tetapi memiliki fitur yang lebih lengkap.

Contoh Transaksi


S = Server
C = Klien


C : (inisialisasi hubungan)
S : 220 Wikipedia ESMTP server ready
C : mail from: user@wikipedia.org
S : 250 mail ok
C : rcpt to: wikipedia@wikipedia.org
S : 250 rcpt ok
C : data
S : 354 end data with CRLF.CRLF
C : -- email data --
C : CRLF.CRLF
S : 250 data ok
C : QUIT
S : 221 bye

SAP (Service Advertising Protocol)

SAP (Service Advertising Protocol) adalah protokol didalam jaringan IPX (milik Novell), SAP digunakan memberikan informasi kepada host2 dalam jaringan IPX apakah sebuah service sedang aktif atau tidak didalam jaringan. Biasanya digunakan oleh server2 untuk memberikan informasi apakah service yang mereka miliki dapat digunakan atau service tersebut dalam keadaan tidak aktif. Server tersebut akan melakukan advertise dengan menggunkan SAP.

Hubungan dengan EIGRP
Protokol EIGRP mempunyai dukungan untuk ikut menyebarkan (redistribute) SAP ini didalam jaringan IPX.

Model OSI








Model OSI – Mengirim pesan dari satu jaringan ke jaringan yang lain merupakan proses yang sangat kompleks. Emangnya kayak ngirim surat cinta kayak jadul getu …enggak lah…yach mirip dikit lah … Sedikit cerita terbentuknya OSI, pada tahun 1977 suatu subcommittee dari International Organization for Standarddization (ISO) mulai bekerja untuk membuat beberapa set standard untuk memfasilitasi komunikasi jaringan. Pekerjaan ini selesai pada tahun 1984 dan dikenal sebagai model referensi OSI – Open System Interconnection. Model OSI ini merupakan metoda yang paling luas digunakan untuk menjelaskan komunikasi jaringan. Seksi berikut mencakup topic-topik:

Model OSI membagi tugas-tugas jaringan kedalam 7 layer

1. Layer 7: Application Layer

2. Layer 6: Presentation Layer

3. Layer 5: Session Layer

4. Layer 4: Transport layer

5. Layer 3: Network layer

6. Layer 2: Data link layer

7. Layer 1: Physical layer

Physical layer merupakan layer pertama, akan tetapi biasa di list pada urutan terakhir dibagian bawah untuk menekankan bagaimana suatu pesan di kirim melalui jaringan. Berikut penjelasan singkat mengenai masing-2 layer OSI dan gue coba analogikan dengan konsep sederhana dari kehidupan kita.

Layer 7: Layer Application

Layer 7 dari model OSI mendifinisikan interface antara software-2 yang berkomunikasi aplikasi yang mmerlukan untuk berkomunikasi keluar dari komputer dimana aplikasi tersebut berada. Layer Application OSI menjelaskan aturan-2 untuk yang berikut:

1. Penyediaan network services

2. Penawaran – pengiklanan network services

3. Pengaksesan network services

Contoh berikut adalah protocol-2 yang mengimplementasikan aturan layer Application.

1. Netware’s services advertising protocol (SAP)

2. TCP/IP Network File System (NFS)

3. TCP/IP Simple Mail Transfer Protocol (SMTP); Telnet; HTTP; FTP; WWW browser

4. Termasuk dalam contoh ini adalah file; print; applikasi database; message.

Layer 6: Layer Presentation

Layer 6 dalam model OSI ini (Session layer) tujuan utamanya adalah mendefinisikan format data seperti text ASCII, text EBCDIC, binary, BCD dan juga jpeg. Enkripsi juga didefinisikan dalam layer 6 ini. Layer OSI Presentation menspesifikasikan aturan-2 untuk yang berikut:

1. Penterjemahan Data

2. Enkripsi dan kompresi data

Protocol-2 berikut adalah contoh yang mengimplementasikan aturan layer Presentation

1. Netware Core Protocol (NCP)

2. AppleTalk Filing Protocol (AFP)

3. JPEG; ASCII; EBCDIC; TIFF; GIF; PICT; encryption; MPEG; MIDI

Misal mainframe mempunyai format EBCDIC; sementara WIndows mempunyai format data ASCII. Tugas layer Presentation adalah menterjemahkan format yang berbeda ini sehingga bisa saling nyambung.

Layer 5: Layer Session

Session layer dari model OSI ini mendefinisikan bagaimana memulai, mengontrol, dan mengakhiri suatu percakapan (disebut session). Hal ini termasuk dalam kendali dan manajemen dari berbagai pesan bidirectional sehingga aplikasi bisa di notifikasi jika beberapa message telah lengkap. Layer OSI ke lima Session menspesifikasikan aturan-2 berikut:

1. Pengendalian sesi komunikasi antara dua piranti

2. Membuat; mengelola; dan melepas koneksi

Yang berikut adalah protocol yang menimplementasikan layer session model OSI:

1. Netware’s Servise Advertising Protocol (SAP)

2. TCP/IP remote procedure call (RPC)

3. SQL; NFS; NetBIOS names; AppleTalk ASP; DECnet SCP

Contoh sederhana analoginya adalah operator telpon. Jika anda mau menelpon suatu nomor sementara anda tidak tahu nomornya, maka anda bisa nanya ke operator. Layer session ini analoginya yach kayak operator telpon getu.

Layer 4: layer Transport

Layer 4 dari model OSI focus pada issue yang berhubungan pengiriman data kepada komputer lain seperti error recovery, segmentasi dari blok data dari aplikasi yang besar kedalam potongan kecil-2 untuk di kirim, dan pada sisi komputer penerima potongan-2 tersebut disusun kembali.

Layer OSI ke 4 ini menspesifikasikan aturan-2 untuk yang berikut:

1. Menyembunyikan struktur jaringan dari layer diatasnya

2. Pemberitahuan kalau data pesan telah diterima

3. Menjamin kehandalan, pengiriman pesan bebas error

Contoh-2 berikut adalah protocol-2 yg mengimplementasikan aturan layer transport

1. Netware’s Sequence Packet Exchange (SPX) protocol

2. TCP/IP’s Transmision Control Protocol (TCP)

3. TCP/IP’s Domain Name System (DNS)

Analogi dari layer transport ini kayak penyedia jasa pengiriman paket, missal Tiki atau Fedex. Tiki atau Fedex bertanggung jawab penuh untuk sampainya paket ke alamat tujuan dan paket dalam keadaan utuh tanpa cacat. Seperti juga ISP, kalau kita ketikkan WWW.dotkom.com maka ISP akan menterjemahkan kedalam address tujuan.

Layer ke 3: Layer Network

Layer Network dari model OSI ini mendefinisikan pengiriman paket dari ujung-ke-ujung. Untuk melengkapi pekerjaan ini, Network layer mendefinisikan logical address sehingga setiap titik ujung bisa diidentifikasi. Layer ini juga mendefinisikan bagaimana routing bekerja dan bagaimana route dipelajari sehingga semua paket bisa dikirim.

Layer OSI Network menspesifikasikan aturan-2 untuk yang berikut:

1. Data routing antar banyak jaringan

2. Frakmentasi dan membentuk ulang data

3. Identifikasi segmen kabel jaringan

Protocol-2 berikut menerapkan aturan layer Network

1. Netware’s Internetwork Packet Exchange (IPX) Protocol

2. TCP/IP’s Internet Protocol (IP); AppleTalk DDP

Analogi dari layer ini tugasnya mengirim surat atau paket ke kota atau kode pos tertentu, tidak langsung di kirim ke alamat tujuan. Layer ini sangat penting dalam jaringan yang kompleks, dimana layer Network mengirim data paket ke jaringan logical. Router berfungsi pada layer ini.

Layer ke 2: Data link layer

Layer Data link OSI menspesifikasikan aturan berikut:

1. Koordinasi bits kedalam kelompok-2 logical dari suatu informasi

2. Deteksi dan terkadang koreksi error

3. Mengendalikan aliran data

4. Identifikasi piranti jaringan

Protocol-2 berikut mengimplementasikan Data link layer:

1. Ntware’s Link Support layer (LSL)

2. Asynchronouse Transfer Mode (ATM)

3. IEEE 802.3/802.2, HDLC, Frame Relay, PPP, FDDI, IEEE 802.5/802.2

Analogi data link ini seperti surat tercatat yang dikirm pada alamat rumah dan dijamin sampai dengan adanya resi yang ditandatangani penerima. Layer ini mengidentifikasi address yang sesungguhnya dari suatu piranti.

Layer ke 1: Layer Physical

Layer Physical dari model OSI ini berhubungan dengan karakteristik dari media transmisi. Contoh-2 spesifikasi dari konektor, pin, pemakaian pin, arus listrik, encoding dan modulasi cahaya. Biasanya dalam menyelesaikan semua detail dari layer Physical ini melibatkan banyak spesifikasi. Layer ini menspesifikasikan aturan-2 berikut:

1. Struktur fisik suatu jaringan missal bentuk konektor dan aturan pin pada konektor kabel RJ-45. Ethernet dan standard 802.3 mendefinisikan pemakaian dari kabel pin ke 1,2,3 dan 6 yang dipakai dalam kabel Cat 5 dengan konektor Rj-45 untuk koneksi Ethernet.

2. Aturan mekanis dan elektris dalam pemakaian medium transmisi

3. Protocol Ethernet seperti IBM Token ring; AppleTalk

4. Fiber Distributed Data Interface (FDDI) EIA / TIA-232; V.35, EIA/TIA-449, RJ-45, Ethernet, 802.3, 802.5, B8ZS

5. Sinkronisasi sinyal-2 elektrik melalui jaringan

6. Encoding data secara electronic

Untuk memudahkan anda mengingat model OSI ini gunakan kalimat berikut:

Aku (Application)

Punya (Presentation)

Susu (Session)

Telor (Transport)

MiNum (Network)

Dalam (Data)

Plastik (Physical)

Weleh kok malah gak nyambung …dah dech pake boso kromo aja biar gampang ngingetnye:

All People Seems To Need Data Processing, yang mappingnya kayak gini:

All (Application)

People (Presentation)

Seems (Session)

To (Transport)

Need (Network)

Data (Data link)

Processing (Physical)

Implementasi Protocol

Perlu diingat bahwa model OSI hanyalah sebuah teori tentang cara melihat komunikasi dalam jaringan. Setiap layer menspesifikasikan standard untuk diikuti saat mengimplementsikan suatu jaringan. Akan tetapi perlu diingat bahwa layer-layer OSI tidak melakukan tuhas-tugas yang real, OSI hanyalah model. Bahasan berikut meringkas keuntungan dan kerugian dari penggunaan model OSI dalam mendeskripsikan komunikasi jaringan.

Keuntungan dan kerugian model OSI

Anda mesti faham betul dengan model OSI ini karena model OSI ini sangat luas digunakan jika bicara soal komunikasi jaringan. Akan tetapi perlu diingat bahwa ini hanyalah sebuah model teori yang mendefinisikan standards bagi programmer dan system administrator jaringan, jadi bukanlah model layer fisik yang sesungguhnya.

Menggunakan model OSI dalam diskusi konseps jaringan mempunyai beberapa keuntungan:

1. Memberikan bahasa dan referensi yang sama antar sesame professional jaringan

2. Membagi tugas-2 jaringan ke dalam layer-2 logis demi kemudahan dalam pemahaman

3. Memberikan keleluasaan fitur-2 khusus pada level-2 yang berbeda

4. Memudahkan dalam troubleshooting

5. Mendorong standard interoperability antar jaringan dan piranti

6. Memberikan modularity dalam fitur-2 jaringan (developer dapat mengubah fitur-2 tanpa mengubah dengan cara pendekatan keseluruhan), jadi bisa main comot antar modul getu lho

Akan tetapi anda perlu mengetahui beberapa batasan dari model OSI ini:

1. Layer-2 OSI adalah teoritis dan tidak melakukan fungsi-2 yang sesungguhnya

2. Dalam implementasi industry jarang sekali mempunyai hubungan layer-ke-layer dengan model OSI

3. Protocol-2 yang berbeda dalam stack model OSI melakukan fungsi-2 yang berbeda yang membantu menerima dan mengirim data pesan secara keseluruhan

4. Implementasi suatu protocol tertentu bisa tidak mewakili setiap layer OSI (atau bisa tersebar di beberapa layer)

Dalam prakteknya, tugas-2 komunikasi jaringan dilaksanakan dengan cara implementasi protocol. Apa sich protocol itu …nich protocol itu kayak standard imdustri piranti software khusus vendor yang dipakai dalam proses komunikasi dalam tugas-2 nya melakukan komunikasi jaringan. Berikut ini menjelaskan beberapa konsep penting untuk diketahui mengenai protocol-2 yang sebenarnya.

Kebanyakan vendor dan implementasi standard industry menggunakan suatu pendekatan layer-2. Suatu kumpulan dari standard-2 yang dimaksudkan untuk digunakan secara bersamaan disebut suatu protocol suite atau protocol stack.

Protocol-2 dalam suatu suite mempunyai cirri-2 berikut:

1. Setiap protocol melaksanakan satu atau beberapa tugas komunikasi jaringan

2. Protocol-2 dapat melaksanakan tugas-2 dalam beberapa layer OSI yang berbeda

3. Beberapa protocol dalam suatu suite yang sama dapat melaksanakan tugas yang sama

4. Beberapa protocol suite membolehkan suatu pilihan dari protocol khusus dalam suite untuk melaksanakan suatu tugas khusus atau meng-enable fitur tertentu.

5. Protocol-2 harus bekerja-sama, mengirim dan mnerima data kepada protocol-2 yang lain.

Protocol-2 dapat juga dibagi kedalam satu dari tiga katagori menurut fungsi-2 yang mereka lakukan. Pembagian antar protocol sering jatuh pada tiga macam divisi.

1. Services

2. Transportasi data

3. Koneksi phisik

Protocol Jaringan

Protocol pada level application bekerja pada layer bagian atas dari model OSI, yaitu: Application; Presentation; Session. Protocol-2 ini melakukan pertukaran data dan komunikasi applikasi-to-applikasi.

Protocol-2 pada level transport (yaitu transport dan network layer) menjalin sesi komunikasi antar komputer; menjamin bahwa data ditransmisikan dengan handal; dan menghadirkan routing antar jaringan.

Protocol-2 pada level physical membentuk hubungan dengan layer bagian bawah dari model OSI (Data link dan Physical layer). Protocol-2 ini menangani informasi; melakukan error-checking; dan mengirim permintaan kirim ulang – (retransmit request).

Catatan:

Beberapa protocol berada pada lebih dari satu level protocol, sehingga protocol-2 bisa jadi tidak klop secara tepat dengan model-2 jaringan. Hal ini dikarenakan suatu protocol dimaksudkan untuk memenuhi suatu tugas tertentu dalam komunikasi, yang mana tidak selalu berhubungan dengan suatu bentuk model.

Komunikasi antar piranti jaringan

Piranti-2 jaringan bisa berkomunikasi antar sesama dikarenakan bahwa piranti-2 tersebut menjalankan protocol stack yang sama, walaupun mereka menggunakan system operasi yang berbeda. Data yang dikirim dari satu piranti berjalan turun ke protocol stack dibawahnya melalui media transmisi, dan kemudian naik ke protocol stack pada sisi piranti lawan komunikasinya.

Kedua belah piranti yang saling berkomunikasi harus menggunakan protocol stack yang sama. Suatu pesan data yang dikirim dari satu piranti ke piranti yang lain berjalan melalui proses seperti berikut:

1. Pesan data dipecah kedalam paket-2

2. Setiap protocol didalam stack menambahkan informasi control kedalam paket, meng-enable fitur-2 seperti inkripsi dan error check. Setiap paket biasanya mempunyai komponen berikut: Header , Data , dan Trailer.

3. Pada layer physical, paket-paket dikonversikan kedalam format electrical yang tepat untuk ditransmisikan.

4. Protocol pada masing-2 layer yang berhubungan pada sisi piranti lawannya (pada sisi penerima) akan menghapus header dan trailer yang ditambahkan saat pengiriman. Paket-2 tersebut kemudian disusun kembali seperti data aslinya.

Catatan:

Informasi header dan trailer yang ditambahkan pada masing-2 layer OSI dimaksudkan untuk bisa dibaca oleh komputer penerima. Missal, informasi yang ditambahkan pada layer transport pada sisi komputer pengirim akan diterjemahkan oleh layer transport juga pada sisi komputer penerima. Makanya interaksi komunikasi layer OSI ini sering dijelaskan sebagai komunikasi antar peer layer.

Header – Header paket mengandung informasi berikut:

1. Address asal dari komputer pengirim

2. Address tujuan dari pesan yang dikirim

3. Informasi untuk mensinkronkan clock

Data – Setiap paket mengandung data yang merupakan:

1. Data real dari aplikasi, seperti bagian dari file yang dikirim

2. Ukuran data bisa sekitaran 48 bytes sampai 4 kilobytes

Trailer – Trailer paket bisa meliputi:

1. Informasi error-checking

2. Informasi control yang lain yang membantu pengiriman data

Process Encapsulation

Adalah process pemecahan suatu pesan kedalam paket-2, penambahan control dan informasi lainnya, dan kemudian mentransmisikan pesan tersebut melalui media transmisi. Anda harus faham betul proses pengiriman pesan ini.

Ada 5 macam step pada proses data encapsulation:







1. Layer bagian atas menyiapkan data yang akan dikirim melalui jaringan

2. Layer transport memecah data kedalam potongan-2 yang disebut segmen, menambah informasi urutan dan juga informasi control.

3. Layer network mengkonversikan segmen kedalam paket-2, menambah logical jaringan, dan menambah address piranti.

4. Layer Data link mengkonversikan paket-2 kedalam frame-2, menambahkan informasi address phisik dari piranti.

5. Layer physical mengkonversikan frame-2 kedalam bit-2 untuk ditransmisikan melalui media transmisi.

Gunakan ringkasan berikut:

1. Layer bagian atas – Data

2. Layer Transport – Segment

3. Layer Network – paket yang mengandung address logical

4. Layer Data link – frame yang mengandung address physical

5. Layer Physical – bits

Model OSI memang hanyalah teori saja, tapi penerapannya sangat luas sekali dalam networking komputer sebagai pondasi networking yang kokoh.